| |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| -> 人工智能 -> CVPR2021目标跟踪汇总(一) -> 正文阅读 |
|
|
[人工智能]CVPR2021目标跟踪汇总(一) |
CVPR2021目标跟踪汇总(一)【1】Learning to Filter: Siamese Relation Network for Robust Tracking论文地址:https://arxiv.org/abs/2104.00829 摘要尽管基于暹罗的跟踪器取得了巨大的成功,但它们在复杂场景下的性能仍然不令人满意,尤其是在有干扰物的情况下。为此,我们提出了一种新的暹罗关系网络,它引入了两个有效的模块,即关系检测器和精化模块。研发以元学习的方式进行,以获得从背景中过滤干扰物的学习能力,而RM旨在将所提出的研发有效地集成到暹罗框架中,以生成准确的跟踪结果。此外,为了进一步提高跟踪器的可辨别性和鲁棒性,我们引入了对比训练策略,该策略不仅试图学习匹配相同的目标,还试图学习如何区分不同的对象。因此,当面对背景杂波、快速运动和遮挡时,我们的跟踪器可以获得准确的跟踪结果。在VOT2018、VOT2019、OTB100、LaSOT和UAV123五个流行基准上的实验结果表明,该方法是有效的,能够获得最先进的结果。 主要工作【1】介绍了一种新的关系检测器(RD),该检测器通过基于少镜头学习的对比训练策略来获得从背景中过滤干扰物的能力。受益于研发,在跟踪过程中,一旦给定目标的初始状态,我们的跟踪器就可以在杂乱的背景中区分目标,而无需进一步微调。 网络结构
结果
【2】STMTrack: Template-free Visual Tracking with Space-time Memory Networks论文地址:https://arxiv.org/abs/2104.00324 摘要如今,提高离线训练的暹罗跟踪器的性能变得越来越困难,因为从第一帧裁剪的模板的固定信息几乎已经被彻底挖掘,但是它们抵抗目标外观变化的能力很差。现有的具有模板更新机制的跟踪器依赖耗时的数值优化和复杂的手工设计策略来实现竞争性能,这阻碍了它们的实时跟踪和实际应用。在本文中,我们提出了一种新的基于时空记忆网络的跟踪框架,该框架能够充分利用与目标相关的历史信息,以更好地适应跟踪过程中的外观变化。具体来说,引入了一种新的存储机制,存储目标的历史信息,引导跟踪器聚焦在当前帧中信息量最大的区域。此外,内存网络的像素级相似度计算使我们的跟踪器能够生成目标的更精确的边界框。在具有挑战性的大规模基准上,与许多竞争对手的追踪器(OTB-2015、TrackingNet、GOT-10k、LaSOT、UAV123和VOT2018)进行了广泛的实验和比较,结果表明,没有花哨的功能,我们的追踪器在以37 FPS运行时,性能优于所有以前最先进的实时方法。 主要工作【1】提出端到端记忆跟踪框架,具有适应性和模板更新策略。 网络结构
结果vot2018 【3】Transformer Tracking论文地址:https://arxiv.org/abs/2103.15436 摘要相关性在跟踪领域起着至关重要的作用,尤其是在最近流行的基于暹罗的跟踪器中。相关运算是一种考虑模板和搜索区域相似性的简单融合方式。然而,相关运算本身是一个局部线性匹配过程,导致语义信息丢失,容易陷入局部最优,这可能是设计高精度跟踪算法的瓶颈。有没有比相关性更好的特征融合方法?为了解决这个问题,受Transformer的启发,本文提出了一种新的基于注意力的特征融合网络,该网络仅使用注意力就能有效地将模板和搜索区域特征结合起来。具体而言,所提出的方法包括基于自我注意的自我上下文增强模块和基于交叉注意的交叉特征增强模块。最后,提出了一种基于类暹罗特征提取主干、设计的基于注意力的融合机制以及分类回归头的Transformer跟踪方法。实验表明,我们的TransT在六个具有挑战性的数据集上取得了非常好的结果,尤其是在大规模的LaSOT、TrackingNet和GOT-10k基准上。我们的跟踪器在图形处理器上以大约50华氏度/秒的速度运行。 主要工作【1】提出新的跟踪框架,包括特征提取模块、融合模块和头部预测模块三部分。融合模块仅使用注意力来组合模板和搜索区域特征,而没有相关性。 网络结构
结果
【4】Transformer Tracking论文地址:https://arxiv.org/abs/2104.14545 摘要在过去的几年中,目标跟踪取得了显著的进步。然而,最先进的跟踪器变得越来越笨重和昂贵,这限制了它们在资源受限的应用程序中的部署。在这项工作中,我们提出了LightTrack,它使用神经架构搜索(NAS)来设计更轻量级和更高效的对象跟踪器。综合实验表明,我们的LightTrack是有效的。它可以找到与手工制作的SOTA追踪器相比性能更好的追踪器,如SiamRPN++ [30]和Ocean [56],同时使用更少的模型Flops和参数。此外,当部署在资源受限的移动芯片组上时,发现的跟踪器运行得更快。例如,在骁龙845肾上腺素图形处理器上,光线跟踪比海洋快12倍,同时使用的参数少13倍,触发器少38倍。这种改进可能会缩小目标跟踪任务中学术模型和工业部署之间的差距。 主要工作【1】提出自动化设计神经架构的目标跟踪。 网络结构
|
|
|
|
|
| 上一篇文章 下一篇文章 查看所有文章 |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| 360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年12日历 | -2025/12/15 11:05:35- |
|
| 网站联系: qq:121756557 email:121756557@qq.com IT数码 |