1、背景
????????前面Hudi的专栏已经详细讲解过本地如何构建这套Hudi的运行环境,在此就不在重复了,如果感兴趣想了解的可以去学习下,从0到1搭建数据湖Hudi环境_一个数据小开发的博客-CSDN博客
? ? ? ? 本次重点是为了能够很好的理解Hudi的两种表COW和MOR,下面将对这两种表操作的详情进行demo操作。
2、实操
2.1、启动Flink SQL Client
export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
./sql-client.sh embedded -j ../lib/hudi-flink-bundle_2.11-0.10.1.jar shell

2.2、启动Hadoop

2.3、创建KafkaTopic
kafka-topics.sh --create --bootstrap-server 11.238.116.75:9092 --replication-factor 1 --partitions 3 --topic hudi_flink_demo
2.4、创建Flink Kafka表和Hudi表
-- 构建kafka source表
CREATE TABLE data_gen (
id STRING,
name STRING,
user_age STRING,
user_other STRING,
ts TIMESTAMP(3)
) WITH (
'connector' = 'kafka',
'topic' = 'hudi_flink_demo',
'properties.bootstrap.servers' = 'ip:9092',
'properties.group.id' = 'testGroup3',
'format' = 'json',
'scan.startup.mode' = 'earliest-offset'
);
?2.4.1、COW表
-- 构建COW模式Hudi表
CREATE TABLE hudi_cow_data_gen(
id STRING,
name STRING,
user_age STRING,
user_other STRING,
ts TIMESTAMP(3),
PRIMARY KEY(id) NOT ENFORCED
)
WITH (
'connector' = 'hudi',
'path' = 'hdfs://localhost:9000/user/root/hudi/hudi_cow_data_gen',
'table.type' = 'COPY_ON_WRITE',
'write.insert.drop.duplicates' = 'true'
);
-- 启动任务
insert into hudi_cow_data_gen select * from data_gen;

启动成功后,可以在yarn上看到这个任务的启动状态

点击上面的“ApplicationMaster”之后可以跳转到相对应的这个任务在Flink之上运行的一个Dashboard页面


可以看到任务都运行正常,并且在hdfs上看到,数据目录已经创建成功,但是因为还没开始写入数据,所以还没有parquet数据文件产生。

往Kafka发送一条数据之后,可以发现,records received已经有一条数据了
?
?在去看下checkpoint页面
在checkpoint成功之后,发现数据文件已经生成
?把parquet文件下载下来查看下里面的内容

?parquet文件读取方式
##查看schema:
java -jar parquet-tools-1.6.0rc3-SNAPSHOT.jar schema -d bf0ef9e2-79de-4cbf-80a9-7b67325eedfb_3-4-0_20220412203746273.parquet | head -n 10
##查看文件内容:
java -jar parquet-tools-1.6.0rc3-SNAPSHOT.jar head -n 100 bf0ef9e2-79de-4cbf-80a9-7b67325eedfb_3-4-0_20220412203746273.parquet
?此jar包可以在评论区留言后向我获取
?

发现插入的数据生效了,下面再插入一条数据,并且主键值还是“qwer1”的这条数据,只是改变下其他列的值,观察数据是否会发生变更。
?
发现hdfs上已经生成了两个parquet文件了,下面换一种方法读取里面的数据,用spark
读取里面的值
2.4.2、Spark读取COW表
import org.apache.spark.SparkConf;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
public class SparkReadHudi {
public static void main(String[] args) {
SparkConf conf = null;
SparkSession sparkSession = null;
conf = new SparkConf()
.setAppName("SparkHudi")
.set("spark.executor.extraJavaOptions", "-Dlog4j.configuration=file:log4j.properties")
.set("spark.logConf", "true")
.set("spark.debug.maxToStringFields", "1000")
.set("spark.sql.decimalOperations.allowPrecisionLoss", "false")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.setMaster("local[*]");
sparkSession = SparkSession.builder()
.config(conf)
.getOrCreate();
Dataset<Row> hudiDataset = sparkSession.read()
.format("hudi")
.load("hdfs://localhost:9000/user/root/hudi/hudi_cow_data_gen")
;
hudiDataset.createOrReplaceTempView("t_flink_hudi_table");
sparkSession.sql("select * from t_flink_hudi_table").show();
}
}
?可以对比发现数据发生了变更,证明Hudi 数据更新生效了。
2.4.3、MOR表
delta_commits --指标含义,根据设置的提交次数来合并数据
-- 构建MOR模式的表
CREATE TABLE hudi_mor_data_gen(
id STRING,
name STRING,
user_age STRING,
user_other STRING,
ts TIMESTAMP(3),
PRIMARY KEY(id) NOT ENFORCED
)
WITH (
'connector' = 'hudi',
'path' = 'hdfs://localhost:9000/user/root/hudi/hudi_mor_data_gen',
'table.type' = 'MERGE_ON_READ',
'read.streaming.enabled' = 'true',
'write.tasks'= '4',
'compaction.tasks'= '4',
'compaction.delta_seconds' = '120',
'compaction.delta_commits' = '1',
'read.streaming.check-interval' = '1'
);
CREATE TABLE hudi_mor_data_gen2(
id STRING,
name STRING,
user_age STRING,
user_other STRING,
ts TIMESTAMP(3),
PRIMARY KEY(id) NOT ENFORCED
)
WITH (
'connector' = 'hudi',
'path' = 'hdfs://localhost:9000/user/root/hudi/hudi_mor_data_gen2',
'table.type' = 'MERGE_ON_READ',
'read.streaming.enabled' = 'true',
'write.tasks'= '4',
'compaction.tasks'= '4',
'compaction.delta_seconds' = '120',
'compaction.delta_commits' = '3',
'read.streaming.check-interval' = '1'
);
? ? ? ? 第一个表构建的是?delta_commits = 1 ,实际测试发现,当发生一次数据提交的时候,后台就会根据checkpoint去触发一次compaction,符合预期;
? ? ? ? 第二个表构建的是?delta_commits = 3,实际测试发现,当发生三次数据提交的时候,后台就会根据checkpoint去触发一次compaction,符合预期;
2.4.4、Spark增量模式读取MOR表
import org.apache.spark.SparkConf;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.hudi.DataSourceReadOptions;
public class SparkReadHudi {
public static void main(String[] args) {
SparkConf conf = null;
SparkSession sparkSession = null;
conf = new SparkConf()
.setAppName("SparkHudi")
.set("spark.executor.extraJavaOptions", "-Dlog4j.configuration=file:log4j.properties")
.set("spark.logConf", "true")
.set("spark.debug.maxToStringFields", "1000")
.set("spark.sql.decimalOperations.allowPrecisionLoss", "false")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.setMaster("local[*]");
sparkSession = SparkSession.builder()
.config(conf)
.getOrCreate();
Dataset<Row> hudiDataset = sparkSession.read()
.format("hudi")
.option(DataSourceReadOptions.QUERY_TYPE().key(), DataSourceReadOptions.QUERY_TYPE_INCREMENTAL_OPT_VAL())
// 设置增量读取数据时开始时间
.option(DataSourceReadOptions.BEGIN_INSTANTTIME().key(), "20220413101430946")
.load("hdfs://localhost:9000/user/root/hudi/hudi_mor_data_gen2");
hudiDataset.createOrReplaceTempView("t_flink_hudi_table");
sparkSession.sql("select * from t_flink_hudi_table").show();
}
}
3、本次Spark代码的pom文件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>hudi-flink-spark</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven-jar-plugin.version>3.2.0</maven-jar-plugin.version>
<maven-surefire-plugin.version>3.0.0-M4</maven-surefire-plugin.version>
<maven-failsafe-plugin.version>3.0.0-M4</maven-failsafe-plugin.version>
<maven-shade-plugin.version>3.2.4</maven-shade-plugin.version>
<maven-javadoc-plugin.version>3.1.1</maven-javadoc-plugin.version>
<maven-compiler-plugin.version>3.8.0</maven-compiler-plugin.version>
<maven-deploy-plugin.version>2.4</maven-deploy-plugin.version>
<genjavadoc-plugin.version>0.15</genjavadoc-plugin.version>
<build-helper-maven-plugin.version>1.7</build-helper-maven-plugin.version>
<maven-enforcer-plugin.version>3.0.0-M1</maven-enforcer-plugin.version>
<maven-docker-plugin.version>0.37.0</maven-docker-plugin.version>
<java.version>1.8</java.version>
<fasterxml.version>2.6.7</fasterxml.version>
<fasterxml.jackson.databind.version>2.6.7.3</fasterxml.jackson.databind.version>
<fasterxml.jackson.module.scala.version>2.6.7.1</fasterxml.jackson.module.scala.version>
<fasterxml.jackson.dataformat.yaml.version>2.7.4</fasterxml.jackson.dataformat.yaml.version>
<fasterxml.spark3.version>2.10.0</fasterxml.spark3.version>
<kafka.version>2.3.0</kafka.version>
<confluent.version>5.3.4</confluent.version>
<glassfish.version>2.17</glassfish.version>
<parquet.version>1.10.1</parquet.version>
<junit.jupiter.version>5.7.0-M1</junit.jupiter.version>
<junit.vintage.version>5.7.0-M1</junit.vintage.version>
<junit.platform.version>1.7.0-M1</junit.platform.version>
<mockito.jupiter.version>3.3.3</mockito.jupiter.version>
<log4j.version>1.2.17</log4j.version>
<log4j.test.version>2.17.0</log4j.test.version>
<slf4j.version>1.7.30</slf4j.version>
<joda.version>2.9.9</joda.version>
<hadoop.version>3.3.1</hadoop.version>
<hive.groupid>org.apache.hive</hive.groupid>
<hive.version>2.3.1</hive.version>
<hive.exec.classifier>core</hive.exec.classifier>
<metrics.version>4.1.1</metrics.version>
<orc.version>1.6.0</orc.version>
<airlift.version>0.16</airlift.version>
<prometheus.version>0.8.0</prometheus.version>
<http.version>4.4.1</http.version>
<spark.version>${spark2.version}</spark.version>
<sparkbundle.version></sparkbundle.version>
<flink.version>1.12.0</flink.version>
<spark2.version>2.4.4</spark2.version>
<spark3.version>3.1.2</spark3.version>
<hudi.spark.module>hudi-spark2</hudi.spark.module>
<avro.version>1.8.2</avro.version>
<scala11.version>2.11.12</scala11.version>
<scala12.version>2.12.10</scala12.version>
<scala.version>${scala11.version}</scala.version>
<scala.binary.version>2.11</scala.binary.version>
<apache-rat-plugin.version>0.12</apache-rat-plugin.version>
<scala-maven-plugin.version>3.3.1</scala-maven-plugin.version>
<scalatest.version>3.0.1</scalatest.version>
<surefire-log4j.file>file://${project.basedir}/src/test/resources/log4j-surefire.properties
</surefire-log4j.file>
<thrift.version>0.12.0</thrift.version>
<jetty.version>9.4.15.v20190215</jetty.version>
<htrace.version>3.1.0-incubating</htrace.version>
<hbase.version>1.2.3</hbase.version>
<codehaus-jackson.version>1.9.13</codehaus-jackson.version>
<h2.version>1.4.199</h2.version>
<awaitility.version>3.1.2</awaitility.version>
<skipTests>false</skipTests>
<skipUTs>${skipTests}</skipUTs>
<skipFTs>${skipTests}</skipFTs>
<skipITs>${skipTests}</skipITs>
<skip.hudi-spark2.unit.tests>${skipTests}</skip.hudi-spark2.unit.tests>
<skip.hudi-spark3.unit.tests>${skipTests}</skip.hudi-spark3.unit.tests>
<skipDocker>${skipTests}</skipDocker>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<main.basedir>${project.basedir}</main.basedir>
<spark.bundle.hive.scope>provided</spark.bundle.hive.scope>
<spark.bundle.hive.shade.prefix/>
<spark.bundle.avro.scope>compile</spark.bundle.avro.scope>
<spark.bundle.spark.shade.prefix>org.apache.hudi.spark.</spark.bundle.spark.shade.prefix>
<utilities.bundle.hive.scope>provided</utilities.bundle.hive.scope>
<utilities.bundle.hive.shade.prefix/>
<argLine>-Xmx2g</argLine>
<jacoco.version>0.8.5</jacoco.version>
<presto.bundle.bootstrap.scope>compile</presto.bundle.bootstrap.scope>
<presto.bundle.bootstrap.shade.prefix>org.apache.hudi.</presto.bundle.bootstrap.shade.prefix>
<shadeSources>true</shadeSources>
<zk-curator.version>2.7.1</zk-curator.version>
<antlr.version>4.7</antlr.version>
<aws.sdk.version>1.12.22</aws.sdk.version>
<proto.version>3.17.3</proto.version>
<protoc.version>3.1.0</protoc.version>
<dynamodb.lockclient.version>1.1.0</dynamodb.lockclient.version>
<dynamodb-local.port>8000</dynamodb-local.port>
<dynamodb-local.endpoint>http://localhost:${dynamodb-local.port}</dynamodb-local.endpoint>
<fastjson.verson>1.2.72</fastjson.verson>
</properties>
<dependencies>
<!-- spark-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-spark-bundle_2.11</artifactId>
<version>0.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-avro_2.11</artifactId>
<version>2.4.4</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-common</artifactId>
<version>0.10.1</version>
</dependency>
</dependencies>
</project>?
?
|