| 
 
 用Pandas Dataframe 做数据对比时踩的坑:  
1.? String 转成 Dataframe后数据类型被置为了object  
| cnt  |
| 461  |  
expect_table = request.context[entity]
logger.info(f"EXPECTED DATAFRAME: {expect_table}")
for field_count, field in enumerate(datatable.query_table.rows):  # pylint: disable=W0612-
        actualdf = actualdf.append(field, ignore_index=True)
2021-09-13 17:48:49,841 - test.step_defs.test_datalake_steps - INFO - EXPECTED DATAFRAME:    cnt
0  461
2021-09-13 17:48:49,862 - test.step_defs.test_datalake_steps - INFO - Actual DATAFRAME:   cnt
0  461
 Attribute "dtype" are different
E       [left]:  object
E       [right]: int64  
2. 用pandas的数据类型转换方法pd.to_numeric解决:  
datatable.query_table = parse_str_table(table_with_header)
    expect_table = request.context[entity]
    logger.info(f"EXPECTED DATAFRAME: {expect_table}")
    actualdf = pd.DataFrame()
    for field_count, field in enumerate(datatable.query_table.rows):  # pylint: disable=W0612-
        actualdf = actualdf.append(field, ignore_index=True)
    actualdf=actualdf.apply(pd.to_numeric, errors='ignore')
    logger.info(f"Actual DATAFRAME: {actualdf}")
    assert_frame_equal(actualdf, expect_table)
    assert actualdf.equals(expect_table, )  
to_numeric具体用法参见:  
pd.to_numeric - 晓尘 - 博客园  
参数 erros='ignore'表示只对数字字符串转换,其它类型一律不转换,包含时间类型 
                
        
    
 
 |